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Abstract

Sound-absorbing liners for ducts are often made in several azimuthal sections with acoustically hard strips, known as

splices, between them. These can alter the liner’s performance by causing scattering between mode orders, usually to the

detriment of overall attenuation. Three-dimensional finite element methods, often involving specialised codes, have

previously been used to predict the performance of such spliced liners. Here, an alternative approach is presented which

uses a readily available two-dimensional finite element solver to find the modes of the spliced liner and then matches them

to the analytical modes of the hard duct. The results are compared with three-dimensional finite element calculations to

verify their accuracy. The method as described is for ducts with no flow, but can be extended to flow ducts if necessary.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many applications require sound to be attenuated as it travels along an axisymmetric duct without
obstructing the duct. Duct liners in which an axial segment of the wall is treated in some way to alter its
impedance are widespread and effective in applications ranging from air-conditioning systems to aircraft
engines. Manufacturing and maintenance considerations mean that such liners are often made and fitted in a
number of azimuthal sections, joined with an acoustically hard strip, referred to hereafter as a splice. The
spliced liner usually has less attenuation than a uniform liner with the same impedance, by virtue of the
reduced area of liner. A more serious deficiency, however, occurs when high-azimuthal order spinning modes
are incident upon the liner. In this case each spinning mode may potentially scatter into other spinning mode
of higher- or lower-azimuthal order. This can be a serious problem because liners of this type are typically
most effective for modes that are almost cut-off. The modes that are scattered into lower-azimuthal orders can
be subjected to significantly less attenuation from the liner than the original input mode. For applications such
as aero-engine inlet liners where the liner is designed to attenuate a specific mode generated by the fan, this
scattering phenomenon can seriously limit the performance of the liner in respect of its ability to reduce the
overall noise level of the device. Evidence for this effect was obtained from engine test measurements by
Rademaker et al. [1]. They used a microphone array to decompose the measured sound field into its
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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component modes and found that at certain fan speeds the level of the scattered modes due to a liner with
eight splices was significantly higher than that of the rotor-alone tones.

In order to design liners with tolerable splices it is necessary to be able to predict the level and intensity of
these scattered tones. One of the first studies of non-uniform liners was made by Lansing and Zorumski [2]
who looked at the effects of axial non-uniformity. The problem of azimuthal non-uniformity was studied by
Watson [3] and Astley et al. [4] using finite elements. More recently, Regan and Eaton [5] have used finite
elements to study spliced liners with input modes of higher-azimuthal orders as computing power has
increased.

Watson [6] and Fuller [7,8] used an analytical approach to derive a large system of coupled equations which
can, in principle, be solved to obtain the scattering matrix. In practice, however, the numerical effort involved
in solving such a large system of equations is likely to be of a similar order to that required to solve the
problem numerically by other means. Tester et al. implemented an unpublished approximate formulation by
Cargill based on the Kirchoff approximation [9].

The approach described here uses a hybrid analytical–numerical method. The eigenmodes and
eigenfrequencies of an infinitely long spliced-lined duct are calculated numerically with a two-dimensional
finite element solver. These modes are then matched to the discretised analytical modes of a hard duct to
calculate the amplitude of scattered modes for an arbitrary input distribution. Results are presented for a test
case which is solved by both this method and by a full three-dimensional finite element calculation, indicating
the accuracy of the method. Issues concerning the relative speed of the two methods are described in Section 5.
The method as described here is appropriate for ducts without flow, but can be extended to uniform flow
cases.

A significant advantage of this method is that it does not require the development of any specialised finite
element code. Instead existing Helmholtz solvers can be used. These are widely available and easy to use,
meaning that the study of such problems becomes open to those who are not finite element specialists.
2. Theory

2.1. Modal representation

The situation to be considered is shown in Fig. 1 and consists of an infinitely long circular duct of radius a

with hard walls. A section of length L is lined with a locally reacting liner that has impedance ZðyÞ, which
varies azimuthally but not axially. For definiteness it shall be considered to have constant impedance Z

everywhere except on two strips �D=2oyoD=2 and p� D=2oyopþ D=2, which are acoustically hard. The
method presented can, however, be applied to arbitrary azimuthal variation.
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Fig. 1. Schematic diagram of the situation being modelled.
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A single time-harmonic spinning mode of the hard-walled duct is incident from x ¼ �1. It is required to
find the amplitudes of the modes reflected towards x ¼ �1 and of those scattered towards x ¼ 1. Let I, II
and III denote the regions to the left of, inside, and to the right of the liner, respectively, as shown on the
figure. The pressure field in region I can be written as

pðIÞðx; r; yÞ ¼
X1

m¼�1

X1
n¼1

ðaþm;nJmðkm;nr=aÞejð�kI
m;nxþmyÞ þ a�m;nJmðkm;nr=aÞejðk

I
m;nxþmyÞÞ, (1)

where km;n is the nth solution of

dJmðrÞ

dr

����
r¼km;n

¼ 0 (2)

and expðjotÞ time-dependence has been suppressed. In region II the pressure field can be written as

pðIIÞðx; r; yÞ ¼
X1
n¼1

ðbþcne
�jkII

n x þ b�cne
jkII

n ðxþLÞÞ (3)

and in region III it is the same as in region I but with aþ and a� replaced by cþ and c� and a factor of ejkL

applied to each term. This means that the aþ, a� and bþ waves have their origin at x ¼ 0 and the b�, cþ and c�

waves have their origin at x ¼ L. The cn in Eq. (3) are the eigenmodes of an infinitely long-lined spliced duct;
if they and the corresponding axial wavenumbers kII

n are known then the relationship between the cþm;n and the
aþm;n can be estimated by mode-matching. Rather than attempt to find analytic expressions for the transverse
eigenmodes of such a duct the approach taken here is to solve the eigenproblem numerically using the finite
element method.

2.2. Boundary conditions

The numerical problem is to find approximate solutions to the equation

ðr2
? � k2nÞfn ¼ 0, (4)

where r2
? is the two-dimensional Laplacian operator for eigenfunctions fn (which can be interpreted as

velocity potential in this context) over a specified domain with Dirichlet, Neumann or Robin boundary
conditions on distinct portions of the boundary.

For the splice regions the boundary condition is

qf
qn
¼ 0, (5)

that is to say a Neumann boundary condition appropriate to an acoustically hard wall. For the liner the
impedance condition is such that

p ¼ rcurZspec, (6)

where ur is the normal velocity at the wall, equivalently the radial velocity in a circular duct. Rewriting this
equation in terms of velocity potential gives

�rjkcf ¼ �rc
qf
qn

Zspec (7)

or

f ¼
�jZspec

k

� �
qf
qn

. (8)
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2.3. Mode matching

Let the hard wall modes be numbered according to some scheme so that Eq. (1) can be rewritten as

pðIÞðx; r; yÞ ¼
X1
n¼1

ðaþfne
�jkI

nx þ a�fne
jkI

nxÞ. (9)

Let U be a matrix whose columns are the fn discretised so that each element represents the value at a
particular spatial location in ðr; yÞ. These are arranged so that every column of U corresponds to a particular
mode, and every row of U corresponds to a particular spatial location across the duct cross-section. The
dimensions of U are Nn �Nm, where Nm is the number of modes and Nn is the number of spatial locations.
These spatial locations will be the nodes of a finite element decomposition of the domain. Let aþ be a column
vector whose elements are the incident mode amplitudes aþn , likewise for a

�, bþ and so on. Similarly, define W
to be the discretised modes of the lined duct. Approximating the pressure field by a finite number of modes the
pressure fields on either side of x ¼ 0 can be equated by writing

Uðaþ þ a�Þ ¼ Wðbþ þ Eb�Þ (10)

and at x ¼ L by writing

Uðcþ þ c�Þ ¼ WðEbþ þ b�Þ, (11)

where E is a diagonal matrix whose nth element is ejk
II
n L. In a similar manner, axial velocity can be matched by

writing

UKhðaþ � a�Þ ¼ WKlðbþ � Eb�Þ (12)

and

UKhðcþ � c�Þ ¼ WKlðEbþ � b�Þ, (13)

where Kh is a diagonal matrix whose nth element is kI
n, the wavenumbers for the hard-walled duct, and Kl is a

diagonal matrix whose nth element is kII
n , the wavenumbers for the lined duct.

Eqs. (10) and (12) can be combined as

U U

UKh �UKh

� �
aþ

a�

� �
¼

W WE

WKl �WKlE

� �
bþ

b�

 !
, (14)

while Eqs. (11) and (13) give

U U

UKh �UKh

� �
cþ

c�

� �
¼

WE W

WKlE �WKl

� �
bþ

b�

 !
. (15)

In the present problem aþ is specified, c� ¼ 0 to satisfy the usual radiation condition, and cþ is required.
Further rearranging gives

U �WE

UKh �WKlE

� �
aþ

b�

� �
¼

W �U

WKl UKh

� �
bþ

a�

 !
(16)

and

WE �U

WKlE UKh

� �
bþ

c�

 !
¼

U �W

UKh WKl

� �
cþ

b�

� �
. (17)

In principle, this system of equations can be solved to give cþ in terms of aþ but in practice this approach
suffers from poor conditioning. The following alternative approach has been found to be successful in such
cases [10].
1.
 Set b� ¼ 0 in Eq. (16).

2.
 Solve Eq. (16) for bþ and a�.
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3.
 Use the resulting bþ in Eq. (17) and solve for cþ and b�.

4.
 Repeat steps 2–4 but use the values for b� calculated in the previous iteration instead of zero.
The procedure as described above imposes a matching condition at every node of the discretised cross-
section. This leads to very large, non-square, matrices in Eqs. (16), (17) and relatively poor results since no
spatial averaging occurs. It also requires two over-determined systems of equations to be solved in each
iteration, since the number of nodes will typically be much larger than the number of modes. Better results can
be achieved by projecting the matching condition onto a set of basis functions such as the hard-wall modes,
and by using the mass-matrix of the finite element mesh to average across elements. This can be implemented
by following the same procedure as described above but premultiplying every element in the matrices in Eqs.
(16) and (17) by UM, where M is the mass matrix. This also reduces the size of the matrices in Eqs. (16) and
(17) from 2Nn � ðN

I
m þNII

m Þ to 2Nm � ðN
I
m þNII

m Þ, where Nn is the number of nodes in the mesh and the Nm

are the number of modes included in each region. Furthermore, if NI
m and NII

m are chosen to be equal the
resulting matrices will be square, allowing simpler, more efficient solution techniques. This procedure
converges to a stable answer that is typically to within 0.1 dB within five iterations.

In order to accurately represent the field across the matching region NI
m should be chosen so that all cut-on

and a few cut-off modes are included, and NII
m should be chosen to be sufficiently large that the largest real

part of a tranvserse wavenumber for the lined section modes is close to the highest transverse wavenumber of
the hard wall modes. The cut-off modes in region I will evanesce in the axial direction but oscillate in the
transverse plane so it is necessary to discretise the cross-section sufficiently finely that such transverse pressure
patterns can still be adequately represented.

The method as presented above finds the transmitted and reflected modal amplitudes for one particular
incident field, which has a single corresponding modal amplitude vector aþ. Once W has been found, however,
it is simple to determine the transmitted and reflected response to any input field by replacing aþ with the
identity matrix and letting all the other modal amplitude vectors become matrices of the same width. The
matrices that are then found corresponding to what were cþ and a� will consist of columns each of which gives
the scattered and reflected modal amplitudes for each unit amplitude incident mode. With this the response to
any incident wavefield can be synthesised.

At any stage of the matching process the pressure mismatch at each of the interfaces can be examined by
evaluating Uðaþ þ a�Þ �Wðbþ þ Eb�Þ for the entrance and WðEbþ þ b�Þ �Uðcþ þ c�Þ for the exit to the
liner. In this way the size and distribution of any error can be assessed.
3. Test cases

3.1. Comparison with specialised finite element software

A test case was defined in which the liner length L was equal to a the radius of the duct and the frequency
was such that ka ¼ 12:948. This value was chosen so that the mode with m ¼ 10 and n ¼ 1 is 10% cut on, that
is to say ka ¼ 1:1� k10;1. Two cases for the specific impedance of the liner were chosen, one with Zspec ¼ 2� j
and one with Zspec ¼ 2þ j. Both signs were chosen because it has been shown by Rienstra [11] that modal
characteristics are quite different in the two cases, with a distinct family of ‘surface modes’ being exhibited in
one case. By exploring both cases it was possible to verify that the procedure works in both cases. The liner
contained two splices, diametrically opposite each other. Each splice had a width D ¼ 7:72 cm (measured as
the length of the arc it made around the duct) so that non-dimensional splice width kD ¼ 1. This meant that
the angle subtended by each splice was D ¼ 0:0772 radians or 4:425�.

Having two equally spaced, equally sized splices means that the problem is symmetrical and could be
reduced to a smaller problem. In this test, however, the full problem was solved. The symmetry means that
only modes whose azimuthal order differs from that of the incident mode by an even number will be excited.
By using both procedures to predict the amplitude of all modes, not just those that will be excited it is possible
to assess the noise floor of the method by determining the predicted level of modes whose amplitude should be
non-existent.
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The eigenvalue solver used was that incorporated into the MATLAB partial differential equations toolbox
[12]. The matching was performed in MATLAB, and the resulting systems of equations were solved using
MATLAB’s ’n’ operator in each iteration.

A single mode of azimuthal order m ¼ 10 and radial order n ¼ 1, with an amplitude of 150 dB was incident
from the left, i.e. aþ10;1 ¼ 894:42 in Eq. (1). The procedure described above with ten iterations of the matching
procedure were used to calculate the amplitudes of the modes scattered and transmitted to the other side of the
liner, i.e. the values of cþ. For comparison the same problem was solved using a full three-dimensional model
implemented using the ACTRAN finite element package [13], which allows inputs and outputs to models to be
specified in terms of hard-wall duct mode amplitudes. The mesh for the ACTRAN model also had ten nodes
per wavelength, details of the meshing procedure are given in Refs. [14,15].
3.2. Reactive liner energy budget

A second test case was carried out in which the impedance of the lined section was made purely reactive,
that is to say with Zspec purely imaginary. Under these circumstances there is no energy loss mechanism within
the liner, so the transmitted and reflected energies ought to add up to the incident energy. Both positive and
negative reactances were tested, and both single mode and multiple mode inputs were used. No special
procedures had to be employed with regard to mode ordering.
4. Results

4.1. Comparison with specialised finite element software

Fig. 2 shows the spectrum of complex values of kII
n obtained for the spliced lined duct with Zspec ¼ 2þ j.

Fig. 3 shows the corresponding spectrum for the case when Zspec ¼ 2� j. The family of points corresponding
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Fig. 2. Spectrum of complex values of kII
n for the spliced duct with Zspec ¼ 2þ j.
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Fig. 3. Spectrum of complex values of kII
n for spliced duct with Zspec ¼ 2� j.

Fig. 4. A selection of modeshapes for the spliced duct with Zspec ¼ 2þ j.
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to the surface waves are seen as a separate family further from the origin than the ordinary modes. In both
cases the points occur in pairs that are very close. This is not a result of numerical error, unlike the azimuthally
uniform duct in which the eigenvalues occur in pairs, here the symmetry is broken by the splices which causes
the eigenvalue pairs to separate. This issue is further examined below.

Fig. 4 shows nine sample modeshapes for the case when Zspec ¼ 2þ j. These are the modes with the lowest
real parts of their transverse wavenumber, and hence the highest real part of kII

n . Only the real part of the
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complex modeshape is displayed. The departure from modes of the equivalent unspliced lined duct is hard to
see, though it can be detected with a fine enough amplitude scale. Fig. 5 shows nine sample modeshapes for the
case when Zspec ¼ 2� j. The 4th, 5th, 7th and 9th modeshapes (reading from left to right) correspond to
Fig. 5. A selection of modeshapes for the spliced duct with Zspec ¼ 2� j.
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Fig. 7. Comparison of transmitted mode amplitudes (dB) with radial order n ¼ 2 for the case Zspec ¼ 2þ j, calculated by three-
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surface waves and have corresponding values of kII
n lying on the branch that is further from the origin than the

ordinary modes. It is noticeable that these modes seem to show the effect of the splice more pronouncedly.
Fig. 6 shows the amplitudes of the scattered modes with radial order n ¼ 1 for the case where Zspec ¼ 2þ j.

The higher amplitudes for the mode-matched results in the odd azimuthal orders indicates that a higher noise
level was obtained using the two-dimensional method, since in principle these amplitudes should be �1dB.
The modes that are really scattered show an agreement to within 0.5 dB and this agreement can be improved if
necessary by increasing resolution, at the expense of computation time. Fig. 7 shows a similar level of
agreement for the radial order n ¼ 2, and indeed similar agreement is obtained for the entire population of
cut-on modes, though the rest are not shown to save space. Figs. 8 and 9 show similar agreement for the case
when Zspec ¼ 2� j, indicating that ducts which bear surface waves can be treated just as well by this method as
those that do not.

The time taken by the mode-matching procedure was approximately 20min, using a 1GHz PC with 1Gbyte
of RAM. Most of the time was taken in automatic generation of the mesh and calculation of the modes. The
mode matching procedure and the calculation of the hard-wall modes took less than a minute. A compiled
eigenvalue solver using library functions took less than half this time. The time taken by ACTRAN to produce
the corresponding results was approximately 30min on the same platform. This did not include the time taken
to generate the mesh which was done by hand using the ICEMCFD package.

4.2. Reactive liner energy budget

The energy of each transmitted mode was calculated from

W m;n ¼
pkIII

m;n

k
a2 �

m

km;n

� �2
" #

J2
mðkm;naÞjcþm;nj

2

2rc
(18)
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Fig. 8. Comparison of transmitted mode amplitudes (dB) with radial order n ¼ 1 for the case Zspec ¼ 2� j, calculated by three-

dimensional finite elements (light) and two-dimensional mode matching (dark).
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and similarly for the reflected modes with kI
m;n and a�m;n instead of kIII

m;n and cþm;n. In every case the spurious loss

Lerror ¼ 10 log10
W input �W transmitted �W reflected

W input

� �
(19)

was found to be less than �75 dB with sufficient resolution of the finite element mesh. Each individual modal
amplitude also agreed with results from ACTRAN but these are not presented in full for reasons of space.
Multi-modal inputs were handled with no special provisions.

The only case that needs a little care is for purely reactive liners with small negative reactance. In these cases,
as Rienstra has shown [11], a complex solution exists despite the fact that the boundary conditions for the
associated two-dimensional Helmholtz problem are real. For some commercial solvers it is necessary to
explicitly alert them to the possible presence of such solutions.

5. Discussion

It has been demonstrated that matching modes obtained from a two-dimensional finite element model
provides an alternative to solving a three-dimensional finite element model for this type of problem. The
question of which method is preferable depends on circumstances, the deciding factors being accuracy of
solution and time of execution. As has been shown the two methods produce similar results but since there are
no analytic benchmarks available for this problem it is not possible to say which is more accurate. It is,
however, possible to predict situations where each method will have an advantage because the computation
time of the two-dimensional method is independent of the axial length of the lined section of the duct, whereas
the three-dimensional model size will increase proportionately with this length. Therefore, it is reasonable to
assume that for sufficiently long liners the two-dimensional method will be faster. Furthermore, once a
representative set of modes for a particular Helmholtz number have been obtained it is a trivial matter to solve
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Fig. 9. Comparison of transmitted mode amplitudes (dB) with radial order n ¼ 2 for the case Zspec ¼ 2� j, calculated by three-

dimensional finite elements (light) and two-dimensional mode matching (dark).
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further transmission problems since the modes do not need to be recalculated each time. For both methods the
computation time could be reduced by exploiting the symmetry of the problem. In the case considered here it
would be necessary to consider only half the duct (cut either midway through the splices or midway through
the lined sections). By calculating modes with Dirichlet conditions and then Neumann conditions on the cut
boundary it would be possible to obtain all modes for the full problem. The matching could also be applied to
this half-problem as well if desired.

For simulations of realistic aircraft liner conditions it would be desirable to incorporate the effect of flow,
and this capability is already present in the ACTRAN package. The two-dimensional method described here
could be extended to solve the same problem in the presence of uniform flow with a purpose-written solver. In
this case the modeshapes in the lined section would be different for modes propagating upstream and
downstream so the finite element problem to be solved would be larger. One approach would be to use the
ordinary Helmholtz solver to solve each class of modes as a separate problem. This would require an
equivalent boundary condition to be obtained using the procedure due to Ingard [16]. Unfortunately, this
results in a boundary condition that depends on the eigenvalue to be obtained. It is possible to solve such
problems with a standard Helmholtz solver, by using the no-flow eigenvalue as an initial value and then
iterating until the correct solution is obtained. Unfortunately this procedure has to be followed for each
individual mode. It is therefore considerably more efficient to solve the coupled implicit-eigenvalue two-
dimensional problem as can be done using, for example, the FEMLAB package. This restricts the choice of
solver but is not greatly more complicated in principle than the method as described.
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